# {I, J} lambda-I basis from A. Church, "A Proof of Freedom From Contraction",
# Proceedings of National Academy of Sciences, Vol 21, 1935, pg 275
# $Id: ij.basis,v 1.3 2010/05/22 00:27:28 bediger Exp $
rule: I 1 -> 1
rule: J 1 2 3 4 -> 1 2 (1 4 3)
abstraction: [_] _ -> I
abstraction: [_] *- *+ -> J (J I I) ([_]2) (J I 1)
abstraction: [_] *+ *- -> J (J I I) 2 ([_]1)
abstraction: [_] * * -> J (J I I) (J I I) (J I (J (J I I) (J I I) (J (J I I) ([_]2) (J (J I I) ([_]1) J))))
def S ([p,q,r] p r (q r))
S a b c
def B ([a,b,c] a (b c))
B a b c
def C ([a,b,c] a c b)
C a b c
def W ([p,q] p q q)
W a b
cycles on
def myT J (J I I) (J I I) (J (J I I) (J I I) (J I J))
myT myT myT myT # period 34 cycle